ASCE 7

SEISMIC DESIGN PARAMETERS

WITH 1997 UBC REFERENCE

WIRA TJONG, S.E.

ACKNOWLEDGEMENT

SEVERAL TABLES AND FIGURES ON THIS PRESENTATIONS ARE TAKEN FROM FEMA PUBLICATIONS 274, 412,413,& 414, ICC AND USGS WEB SITES.

COPYRIGHT © INTERNATIONAL CODES COUNCIL.
REPRINTED WITH PERMISSION, ALL RIGHTS RESERVED

May 21, 2024 ASCE 7

INTRODUCTION

ABBREVIATIONS

ASCE: AMERICAN SOCIETY OF CIVIL ENGINEERS

SEAOC: STRUCTURAL ENGINEER ASSOCIATION OF CALIFORNIA

UBC: UNIFORM BUILDING CODES - OLD CODES

IBC: INTERNATIONAL BUILDING CODES — CURRENT CODES WITH REFERENCE TO ASCE 7: MINIMUM DESIGN LOADS FOR BUILDING

CBC: CALIFORNIA BUILDING CODES — ADOPT IBC AS BASELINE

HISTORY OF UBC | IBC

FIRST UBC WAS PUBLISHED IN 1927

SEISMIC PROVISIONS IN APPENDIX & OPTIONAL TO LOCAL **JURISDICTION**

LONG BEACH EARTHQUAKE IN 1933
CA FIELD ACT: SEISMIC DESIGN MANDATORY FOR SCHOOLS AND, LATER, HOSPITALS

SEISMIC PROVISIONS IN THE MAIN TEXT 1940s

REQUIRED FOR ALL BUILDINGS; PROHIBIT NEW UNREINFORCED MASONRY BUILDINGS; LATE 1940s, MANDATORY BOLTING DOWN OF WOOD FRAME BUILDINGS, INCLUDING HOUSES.

SEISMIC DESIGN REGULATIONS WAS PUBLISHED 1950s

BY ASCE/SEAOC JOINT COMMITTE KNOWN AS "SEPARATE 66" THE FIRST TIME DYNAMIC BEHAVIOR OF STRUCTURE DURING EQ IS CONSIDERED

HISTORY OF UBC | IBC

SEISMIC DESIGN REGULATIONS WAS FORMED IN 1959

BY SEAOC STATE LEVEL SEISMOLOGY COMMITTEE IN ONGOING

EFFORT FOR BETTER SEISMIC DESIGN CODES

SAN FERNANDO EARTHQUAKE IN 1971

MANY CHANGES IN SEISMIC DESIGN REFLECTED IN 1973 AND 1976 **UBC CODES**

NEW SEISMIC REQUIREMENTS IN 1973
WALL/ROOF CONNECTIONS FOR TILT UP WALL BUILDING; SOIL FACTOR; INCREASED FORCE LEVELS (1.5 TO 2.5 TIMES LARGER THAN PREVIOUS CODES); REQUIRES DUCTILE (SPECIAL) CONCRETE MOMENT RESISTING FRAMES

MEXICO CITY EARTHQUAKE IN 1985 AMPLIFICATION DUE TO SOFT SOIL

MID 1980s

CA SENATE BILL 547: UNREINFORCED MASONRY BUILDING RETROFIT LAW

May 21, 2024 CBC/ASCE 7/IBC

HISTORY OF UBC | IBC

NEW SEISMIC BASE SHEAR EQUATION IN 1988

CONSIDERATION OF IRREGULAR SHAPES, SIZES AND MASS; GYPSUM BOARD SHEAR CAPACITY WAS REDUCED

LOMA PRIETA EARTHQUAKE IN 1989

AMPLIFICATION IN SOFT SOILS LARGER THAN THE CODE'S EXPECTED

NEW SEISMIC REQUIREMENTS IN 1991

MORE STRINGENT REQUIREMENT FOR BUILDINGS IN SOFT SOILS; URM RETROFIT STANDARDS IN UCBC APPENDIX CHAPTER 1

NEW SEISMIC REQUIREMENTS IN 1994

USE OF WOOD FRAME CONSTRUCTION WAS DEFINED AND LIMITED; NEW CONCRETE SHEAR WALL DESIGN REQUIREMENT.

NORTHRIDGE EARTHQUAKE IN 1994

REFLECTED IN 1997 UBC; MORE STRINGENT WALL TO ROOF CONNECTION

May 21, 2024 CBC/ASCE 7/IBC

MAJOR CHANGES DUE TO RECENT EARTHQUAKE

THE LAST UBC - 1997

- INFLUENCED BY 1994 LOS ANGELES, NORTHRIDGE EQ
- REDUNDANCY & NEAR FAULT FACTORS
- VERTICAL SEISMIC FORCE TO BE INCLUDED IN THE DESIGN
- EQUIPMENT ANCHORAGE BASED ON THE LOCATION ABOVE THE GROUND

ASCE 7

1997

199

- **♦ EARTHQUAKE FORCES PER ASCE 7 –2005 OR 2010**
- DESIGN EQ/ BASIS GROUND MOTION
- SEISMIC ZONES ARE REPLACED BY RESPONSES CONTOUR
- SEISMIC DESIGN CATEGORY (SDC) & SITE SPECIFIC LONG PERIOD
- **EQUIPMENT ANCHORAGE FORCE REFINEMENT**May 21, 2024

ASCE 7

INTRODUCTION

OBJECTIVES & EQ LEVEL DEFINITIONS

1997 UBC

A. TO PROVIDE BUILDING WHICH IS

EXPECTED TO MEET LIFE SAFETY

OBJECTIVE AND NOT TO LIMIT

DAMAGE OR MAINTAINING

FUNCTION

- B. STRUCTURES HAVE TO BE ABLE TO RESIST
 - 1. A MINOR EARTHQUAKE WITHOUT DAMAGE
 - 2. A MODERATE EARTHQUAKE
 WITHOUT STRUCTURAL DAMAGE
 BUT POSSIBLY EXPERIENCE
 SOME NON-STRUCTURAL
 DAMAGE

A. LIFE SAFETY FOR STANDARD BUILDING UNDER DESIGN EARTHQUAKE

ASCE 7

B. DEFINE EQ LEVEL BASED ON PROBABILITY OF OCCURRENCE

May 21, 2024 ASCE 7

OBJECTIVES & DESIGN CATEGORY

1997 UBC

3. A MAJOR EARTHQUAKE
HAVING AN INTENSITY EQUAL
TO THE STRONGEST EITHER
EXPERIENCED OR FORECAST
FOR THE BUILDING WITHOUT
COLLAPSE, BUT POSSIBLY WITH
SOME STRUCTURAL & NONSTRUCTURAL DAMAGE.

IT IS EXPECTED THAT IN MAJOR EARTHQUAKE, DAMAGE WILL BE LIMITED TO A REPAIRABLE LEVEL.

ASCE 7

BY CORRELATING THE EXPECTED
PERFORMANCE LEVEL UNDER
DIFFERENT EQ LEVELS, EACH
BUILDING IS ASSIGNED SEISMIC
DESIGN CATEGORY (SDC) "A" TO "F"
BASED ON

- OCCUPANCY CATEGORY OF THE BUILDING
- LOCAL GROUND MOTION INTENSITY AND SITE CLASS/SOIL TYPE

EACH DESIGN CATEGORY HAS
SPECIFIC DETAILING &
CONFIGURATION REQUIREMENT
WITH CATEGORY "F" AS THE MOST
STRINGENT AND DUCTILE.

11.1.2 SCOPE

1997 UBC

- APPLIES TO BUILDING AND NON- BUILDING STRUCTURES.
- ONE OR TWO STORY FAMILY DWELLING IN ZONE 1 NEED NOT CONFORM TO THIS PROVISION.

ASCE 7

NON-STRUCTURE INCL COMPONENTS EXCEPT

- DETACHED ONE OR TWO FAMILY DWELLINGS
 - UNDER SEISMIC DESIGN CATEGORY (SDC) A, B, or C or LOCATED AT THE AREA WITH Ss < 0.4 G

OR

- ASCE 7: 2 STORIES or LESS USING WOOD FRAME SATISFYING IRC
- CBC: SEISMIC RESISTING SYSTEM OF WOOD FRAME CONFORMING TO SECTION 2308

11.1.2 SCOPE

• AGRICULTURAL
STORAGE WITH
INCIDENTAL HUMAN
OCCUPANCY

• NOT IN SCOPE
SPECIAL STRUCTURES:
BRIDGES, ELEC
TRANSMISSION
TOWERS, BURIED
UTILITIES LINES,
NUCLEAR REACTORS

SEISMIC DESIGN REQUIREMENT

- SEISMIC DESIGN IS NOT ONLY FOR HIGHRISE BUILDING
- CASUALTY FROM INDUSTRIAL BUILDING FAILURE CAN BE CATASTROPHIC AND ENORMOUS TO THE PUBLIC
- EQUIPMENT ANCHORAGE NEEDS TO BE ENGINEERED AND DESIGNED
- PROPER DETAILING IS MORE IMPORTANT THAN DESIGN FORCES IN SURVIVING SEISMIC EVENT

OCCUPANCY CATEGORY & IMPORTANCE FACTORS

OCCUPANCY CATEGORY

CBC TABLE 1604.5/ASCE TABLE 1.5 -1

I: OTHER BLDGS/STRUCTURES WITH LOW HAZARD

II: ALL BUILDINGS NOT UNDER I, III, OR IV

III: BUILDINGS WITH SUBSTANTIAL HAZARD AND ECONOMIC IMPACT, MASS DISRUPTION

IV: ESSENTIAL BUILDINGS AND BUILDINGS CONTAINING CERTAIN QUANTITY OF HIGHLY TOXIC SUBSTANCES

BUILDING IMPORTANCE FACTOR ASCE 7 TABLE 1.5 -2

OC I II III IV

I 1.0 1.0 1.25 1.50

May 21, 2024 ASCF 7

INTRODUCTION

20.3 SOILS TYPE/SITE CLASS

1997 UBC SOIL PROFILE TYPE PER TABLE 16-J (6 TYPES) ASCE 7
SITE CLASSIFICATION PER
TABLE 20.3-1 (6 CLASSES)

- USE TYPE Sd IF UNKNOWN
- SPECIAL SITE EVALUATION FOR SOIL TYPE Sf
- **♦ USE SITE CLASS "D" IF UNKNOWN**
- SPECIAL SITE EVALUATION FOR SITE CLASS "F"

-	Site Class	Shear Wave Velocity						
A	Hard rock	> 5000 ft/sec						
В	Rock	2,500 to 5,000 ft/sec						
С	Very dense soil and soft rock	1,200 to 2,500 ft/sec						
D	Stiff soil Stiff soil	600 to 1,200 ft/sec						
Е	Soft clay soil	< 600 ft/sec						
F	Soils vulnerable to failure or collapse under seismic loading, such as liquefiable soils, highly sensitive							

SOILS TYPE/SITE CLASS

TYPE Sf

- LIQUEFIABLE SOILS, QUICK AND HIGHLY SENSITIVE CLAYS, WEAK CEMENTED SOILS
- > 10 ft [3 m] THICK PEATS OR HIGHLY ORGANIC CLAY
- > 25 ft [7.6 m] THICK VERY HIGH PLASTICITY CLAY WITH PI>75
- > 120 ft [36.5 m] THICK SOFT/MEDIUM STIFF CLAY

CLASS "F"

- * LIQUEFIABLE SOILS, QUICK AND HIGHLY SENSITIVE CLAYS, WEAK CEMENTED SOILS
- > 10 ft [3 m] THICK PEATS OR HIGHLY ORGANIC CLAY
- > 25 ft [7.6 m] THICK VERY HIGH PLASTICITY CLAY WITH PI>75
- > 120 ft [36.5 m] THICK SOFT/MEDIUM STIFF CLAY

May 21, 2024 ASCE 7

DESIGN EQ GROUND MOTION

1997 UBC

BASIS GROUND MOTION
WITH 10% PROBABILITY OF
EXCEEDANCE IN 50 YEARS (
ONCE IN 475 YEARS)

ASCE 7

MAPPED MAX CONSIDERED EQ GEOMETRIC MEAN (MCE_G) PEAK GROUND ACCELERATION WITH 2 % PROBABILITY OF EXCEEDANCE IN 50 YEARS (ONCE IN 2500 +- YEARS)

May 21, 2024 ASCE 7

INTRODUCTION

DESIGN EQ GROUND MOTION

1997 UBC

2. SEISMIC ZONE IN ACCORDANCE WITH FIG. 16-2 WITH A ZONE FACTOR Z PER TABLE 16-I (5 ZONES)

ZONE 1 2A 2B 3

Z 0.075 0.15 0.20 0.30 0.40

EFFECTIVE PEAK GROUND ACCELERATION

IN g

PGA FOR 475 YEARS EQ

May 21, 2024 ASCE 7

INTRODUCTION

ASCE 7

2. SPECTRAL RESPONSE
ACCELERATIONS AT
SHORT PERIOD (Ss) AND
AT 1 SECOND PERIOD
(S1) BASED ON LOCAL
MCE_R WITH 5 %
DAMPING

Ss FOR 2500 YEARS EQ

SITE COEFFICIENTS

1997 UBC

ASCE 7

3. NEAR FAULT FACTORS Na & Nv

3. DETERMINE SITE

COEFFICIENTS Fa & FV

PER TABLE 11.4-1 & 2

FUNCTION OF SITE CLASS

& MCE_R SPECTRAL RESP

ACCLELARATION Ss AND

S1 ON CHAPTER 22

SITE COEFFICIENTS

SITE COEFFICIENT	Fa	SITI	E CO	EFFI	CIEN	TFV
Linear interpolation for	SITE					
intermediate	L					
values of Ss and S1	A					
Ss	S			S1		
<=0.25 0.50 0.75 1.0 >= 1.2	25 S	<= 0.10	0.2	0.3	0.4	>= 0.5
0.80 0.80 0.80 0.80	Α	0.80	0.80	0.80	0.80	0.80
1.00 1.00 1.00 1.00 1.00	В	1.00	1.00	1.00	1.00	1.00
1.20 1.20 1.10 1.00 1.00	С	1.70	1.60	1.50	1.40	1.30
1.60 1.40 1.20 1.10 1.00	D	2.40	2.00	1.80	1.60	1.50
2.50 1.70 1.20 0.90 0.90	E	3.50	3.20	2.80	2.40	2.40

May 21, 2024 ASCE 7

SPECTRAL RESPONSES

1997 UBC

- 4. BASED ON ZONE AND SOIL
 PROFILE, DETERMINE SEISMIC
 RESPONSE COEFFICIENTS Ca
 PER TABLE 16 Q AND CV PER
 TABLE 16 R
- 5. FOR ZONE 4, DETERMINE THE NEAR FAULT FACTORS Na AND NV BASED ON DISTANCE FROM AND THE TYPE OF THE NEARBY FAULT.

ASCE 7

4. DETERMINE RISK TARGETED
MAX CONSIDERED EQ (MCE_R)
SPECTRAL RESPONSE
ACCELERATION PARAMETERS

Sms = Fa Ss Sm1 = Fv S1

5. DETERMINE DESIGN SPECTRAL RESPONSE ACCELERATION PARAMETERS

SDs=2.5Ca & SD1=Cv

11.6 SEISMIC DESIGN CATEGORY(SDC)

SDC IS USED TO DETERMINE THE REQUIRED LEVEL OF DUCTILE **DETAILING & PERMITTED STRUCTURE CONFIGURATION**

TABLES 1613.5.6(1) / ASCE 7 - 11.6.1

1.	DETERMINE SEISMIC
	DESIGN CATEGORY (SDC
	"A" TO "F") PER CBC
	SECTION 1613.5.6 OR
	ASCE 7 11.6. USE THE
	MOST SEVERE SDC FROM
	THE TABLES REGARDLESS
	OF T

	SM.	
	M	
	MC	
	MC	
•	M	
(MC	
	M	
(MC	
	MC	
	MC	
	M	
	M	
(M	
()M	
)M	
•	EGG	
•	EGG	
	EGG	
•	EGG	
	ESS	

	OCCUPA	FEGORY	
VALUE OF SDs	l or II	111	IV
SDs < 0.167 g	A	Α	Α
0.167 g<= SDs<0.33 g	В	В	С
0.33 g <= SDs < 0.50 g	C	С	D
SDs >= 0.50 g	Ď	D	D
TABLES 1613.5.6(2) / ASCE	7 - 11.6	-2
VALUE OF SD1	l or II	III	IV
SD1 < 0.067 g	A	А	Α
0.067 g<= SD1 < 0.133 g	В	В	С
0.133 g <= SD1 < 0.20 g	C	С	D
SD1 >= 0.20 g	D	D	D
S1 > = 0.75 g	E	E	F

2) • •	S	DC	EF	O I	R C	C	ΙŢ	0]	Π	AT	ŀ
		S	1>	=().7	5 g						

3. SDC F FOR OC IV AT S1 >= 0.75 g

May 21, 2024 ASCE 7

INTRODUCTION

SDC EXAMPLE

SEVEN STORY CONCRETE FRAME FOR OFFICE BUILDING IN KATHMANDU

Acceleration Responses:

Ss = 1.15 g & S1 = 0.45 g - US STATE DEPT.

OFFICE BUILDING

Occupancy Category II - I = 1.0

PER TABLE 20.3-1, UNKNOWN SOILS CONDITION

SITE CLASS "D"

SITE COEFFICIENTS:

Fa = 1.01 FROM <u>TABLE</u> 11.4-1

Fv = 1.55 FROM TABLE 11.4-2

May 21, 2024 ASCE 7

SDC EXAMPLE

SPECTRAL ACCELERATION RESPONSE:

Sms = Fa Ss = 1.10 ; Sm1 = Fv S1 = 0.70

DESIGN ACCELERATION RESPONSE:

SDs = 2/3 Sms = 0.80 ; SD1 = 2/3 Sm1 = 0.47 in g

SEISMIC DESIGN CATEGORY:

BASED ON THE DESIGN ACCELERATION RESPONSE, TAKE THE WORST WORST CASE FROM <u>TABLES 11.6-1</u>& 11.6-2 TO GET THE SEISMIC DESIGN CATEGORY:

SDC "D"

CHECK PROVISION FOR S1 > 0.75 g ... NOT APPLICABLE

IBCPRO SOFTWARE

SEISMIC DESIGN CATEGORY STEPS SUMMARY

IS THE STRUCTURE IN SCOPE?

AGRICULTURAL STORAGE?
SPECIAL STUCTURES?

1 OR 2 STORY RESIDENTIAL WOOD FRAME IN SDC C?

OCCUPANCY CATEGORY

I to IV

IMPORTANCE FACTOR

I =1.0,1.25, or 1.5

SITE/SOIL CLASS

A TO F

LOCAL ACCELERATIONS

Ss & S1

DESIGN ACCELERATIONS

Sms& Sm1 SDs & SD1

SEISMIC DESIGN CATEGORY

SDC A TO F

May 21, 2024 ASCE 7

INTRODUCTION

END OF SEMINAR

THANKS ...
QUESTIONS AND
ANSWERS